Physics 8xx: Green functions and contour integrals finale

How is the path integral used to compute n-point functions? The LSZ formula tells us that they are what we need to compute amplitudes. Once again I follow Ramond’s “Field Theory, a Modern Primer”.
Introduce a driving force or current coupled f(t) to the field,

    \[\langle q'(t)|q(T)\rangle=\int \mathcal{D}[q] e^{{i\over \hbar}\int_T^t dt\Big({1\over 2}\dot{q}^2-{1\over 2}\omega^2q^2+fq\Big)}\]

Apply a convergence kludge to assuage any suspicions about convergence of the Gaussian integration

    \[\langle q'(t)|q(T)\rangle=\int \mathcal{D}[q] e^{{i\over \hbar}\int_T^t \Big({1\over 2}\dot{q}^2-{1\over 2}(\omega^2-i\epsilon)q^2+fq\Big)}\]

and use the Fourier transform

    \[q(t)=\int_{-\infty}^\infty {d\xi\over \sqrt{2\pi}} e^{i\xi t} Q(\xi), \qquad Q(\xi)=\int_{-\infty}^\infty {dt\over \sqrt{2\pi}} e^{-i\xi t} q(t)\]

    \[f(t)=\int_{-\infty}^\infty {d\xi\over \sqrt{2\pi}} e^{i\xi t} F(\xi), \qquad F(\xi)=\int_{-\infty}^\infty {dt\over \sqrt{2\pi}} e^{-i\xi t} f(t)\]

This is a unitary transformation, so \mathcal{D}[q]=\mathcal{D}[Q]. We can do the integrations in the exponent if T\rightarrow -\infty and t\rightarrow\infty

(1)   \begin{eqnarray*}\int_{-\infty}^\infty dt\Big({1\over 2}\dot{q}^2+{1\over 2}(\omega^2-i\epsilon)q^2+Fq\Big)&=&\int_{-\infty}^\infty dt\int{d\xi \, d\xi'\over 2\pi}e^{i(\xi+\xi')t}\Big(-\Big({1\over 2}\xi\xi'-{1\over 2}(\omega^2-i\epsilon)\Big)Q(\xi)Q(\xi')\nonumber\\ &+&{1\over 2}\Big(F(\xi)Q(\xi')+F(\xi')Q(\xi)\Big)\Big)\nonumber\\     &=& \int d\xi \Big(-\Big(-{1\over 2}\xi^2-{1\over 2}(\omega^2-i\epsilon)\Big)Q(\xi)Q(-\xi)\nonumber\\     &+&{1\over 2}\Big(F(\xi)Q(-\xi)+F(-\xi)Q(\xi)\Big)\Big)\nonumber\end{eqnarray*}

Change variables

    \[Q(\xi)\rightarrow Q(\xi)+{F(\xi)\over \xi^2-\omega^2+i\epsilon}\]

in which you recognize the Green function for the oscillator, then

    \[\int_{-\infty}^\infty dt\Big({1\over 2}\dot{q}^2+{1\over 2}(\omega^2-i\epsilon)q^2+Fq\Big) \]

    \[ ={1\over 2}\int d\xi \Big(Q(\xi)\Big(\xi^2-\omega^2 +i\epsilon\Big)Q(-\xi)-{F(\xi)F(-\xi)\over \xi^2-\omega^2+i\epsilon}\Big)\]

and finally

(2)   \begin{eqnarray*}\langle q'(\infty)|q(-\infty)\rangle_{F\ne 0}&=&e^{-{i\over 2\hbar}\int d\xi {F(\xi)F(-\xi)\over \xi^2-\omega^2+i\epsilon}} \int \mathcal{D}[Q] e^{{i\over 2\hbar} \int d\xi Q(\xi)\Big(\xi^2-\omega^2 +i\epsilon\Big)Q(-\xi)}\nonumber\\   &=&e^{-{i\over 2\hbar}\int d\xi {F(\xi)F(-\xi)\over \xi^2-\omega^2+i\epsilon}}\langle q'(\infty)|q(-\infty)\rangle_{F=0}\nonumber\end{eqnarray*}

Let’s get back into the time domain

(3)   \begin{eqnarray*}-\int d\xi {F(\xi)F(-\xi)\over \xi^2-\omega^2+i\epsilon}&=&\int_{-\infty}^\infty dt \, dt' \, \Big(-\int {d\xi\over 2\pi}{e^{-i\xi(t-t')}\over \xi^2-\omega^2+i\epsilon}\Big) F(t) \, F(t')\nonumber\\  &=& \int_{-\infty}^\infty dt \, dt' \, F(t) \, D(t-t') \, F(t')\nonumber\\   D(t-t') &=& -\int {d\xi\over 2\pi}{e^{-i\xi(t-t')}\over \xi^2-\omega^2+i\epsilon}\nonumber\end{eqnarray*}

Note that

    \[\Big({d^2\over dt^2}+\omega^2\Big)D(t-t')=\int {d\xi\over 2\pi}e^{-i\xi(t-t')}{(\xi^2-\omega^2)\over \xi^2-\omega^2+i\epsilon}=\delta(t-t')\]

    \[\Big({d^2\over dt^2}+\omega^2\Big)\int_{-\infty}^\infty D(t-t')F(t') \, dt'=\int_{-\infty}^\infty \delta (t-t')F(t') \, dt'=F(t)\]

This justifies it’s Green function name;

    \[q(t)=q_{hom}(t)+\int_{-\infty}^\infty D(t-t')F(t') \, dt'\quad\mbox{obeys}\quad \Big({d^2\over dt^2}+\omega^2\Big)q(t)=F(t)\]

Heaviside step functions (\epsilon>0) have integral representations

    \[e^{-i\omega(t-t')}\theta(t-t')=\frac{1}{2\pi i}\int d\xi\frac{e^{-i\xi(t-t')}}{\xi-\omega+i\epsilon}\]

    \[e^{-i\omega(t'-t)}\theta(t'-t)=-\frac{1}{2\pi i}\int d\xi\frac{e^{-i\xi(t-t')}}{\xi+\omega-i\epsilon}\]

obey \theta(t-t')=1 if t\ge t' and is zero otherwise. You should prove that the integrals on the right sides of these formulas obey this relation, using the Cauchy theorem.

Rendered by QuickLaTeX.com

In the first integral we get a nonzero result iff we can complete the path of integration in the lower half-plane, requiring e^{-i\xi(t-t')}\rightarrow 0 for \xi\rightarrow Re \, \xi-i\infty, which happens if t>t' only. In the second integral we get a nonzero result iff we can complete the path of integration in the upper half-plane, requiring e^{-i\xi(t-t')}\rightarrow 0 for \xi\rightarrow Re \, \xi+i\infty, which happens if t<t' only. The Heaviside function is

    \[\theta(x-y)=\left\{\begin{array}{ll} 1 & x>y\\   0 & x<y\end{array}\right.\]

Rendered by QuickLaTeX.com

Explicitly evaluate D_r;

    \[D_r={2\pi i\over 2\pi } \Big({e^{-i(-\omega-i\epsilon)(t-t')}\over (-\omega-i\epsilon)-(\omega-i\epsilon)}+{e^{-i(\omega-i\epsilon)(t-t')}\over (\omega-i\epsilon)-(-\omega-i\epsilon)}\Big)\theta(t-t')\]

    \[={\sin(\omega(t-t'))\over \omega}\theta(t-t')\]

You can show that D_a=-{\sin(\omega(t-t'))\over \omega}\theta(t'-t), these are the usual oscillator retarded/advanced Green functions.
So what about D(t-t')? The poles are at

    \[0=\xi_p^2-\omega^2+i\epsilon, \qquad \xi_p=\pm \sqrt{\omega^2-i\epsilon}\]

    \[=\omega-i{\epsilon\over 2\omega}=\omega-i\delta, \quad -\omega+i\delta, \quad \delta>0\]

You can show that D_a=-{\sin(\omega(t-t'))\over \omega}\theta(t'-t), these are the usual oscillator retarded/advanced Green functions.\\
So what about D(t-t')? The poles are at

    \[0=\xi_p^2-\omega^2+i\epsilon, \qquad \xi_p=\pm \sqrt{\omega^2-i\epsilon}=\omega-i{\epsilon\over 2\omega}\]

    \[=\omega-i\delta, \quad -\omega+i\delta, \quad \delta>0\]

Rendered by QuickLaTeX.com

We can complete the contour in the lower half-plane when t>t' so that e^{-i(Re\omega+i Im \omega)(t-t')}\rightarrow e^{Im\omega(t-t')}\rightarrow 0 as Im\omega\rightarrow-\infty, contributing

    \[-{2\pi i\over 2}{e^{-i(\omega-i\delta)(t-t')}\over (\omega-i\delta)-(-\omega+i\delta)}\theta(t-t')\]

    \[=-i{e^{-i\omega(t-t')}\over 2\omega}\theta(t-t')\]

We can complete the contour in the upper half-plane when t<t' so that e^{-i(Re\omega+i Im \omega)(t-t')}\rightarrow e^{Im\omega(t-t')}\rightarrow 0 as Im\omega\rightarrow+\infty, contributing

    \[{2\pi i\over 2}{e^{-i(-\omega+i\delta)(t-t')}\over (-\omega+i\delta)-(\omega-i\delta)}\theta(t'-t)=i{e^{i\omega(t-t')}\over 2\omega}\theta(t'-t)\]

resulting in a mix of retarded/advanced signals

    \[D(t-t')={e^{-i\omega(t-t')}\over 2i\omega}\theta(t-t')+{e^{i\omega(t-t')}\over 2i\omega}\theta(t'-t)\]

Ramond (which I am following closely) makes an interesting statement regarding this; “This is a precursor of the Feynmann propagator which describes signal propagation from two sources: positive energy (particle) states moving in positive time and negative energy (antiparticle) states moving backward in time”.

Notation;

    \[e^{-{i\over 2}\int dt_1 \int dt_2 F(t_1)D(t_1-t_2)F(t_2)}=W[F]=e^{iZ[F]}\]

This is a generating function for n-point functions.\\
N-point functions. Starting with dividing [t,t'] into N+1 intervals dt={t'-t\over N+1}, let t'' be somewhere on this interval,

(4)   \begin{eqnarray*}\langle q'(t')|q(t)\rangle&=&\int \mathcal{D}[q] e^{i\int_t^{t'} L(q,\dot{q}) dt}\nonumber\\   &=&\int \prod_{j=1}^N dq_j\langle q'|e^{-iH \, dt}|q_N\rangle\langle q_N|e^{-iH \, dt}|q_{N-1}\rangle\cdots \langle q_1|e^{-iH \, dt}|q\rangle\nonumber\\   \langle q'(t')|\hat{Q}(t'')|q(t)\rangle&=&\int \prod_{j=1}^N dq_j\langle q'|e^{-iH \, dt}|q_N\rangle\langle q_N|e^{-iH \, dt}|q_{N-1}\rangle\cdots \langle q_k|\hat{Q}e^{-iH \, dt}|q_{k-1}\rangle\cdots\langle q_1|e^{-iH \, dt}|q\rangle\nonumber\\   &=&\int \prod_{j=1}^N dq_j\langle q'|e^{-iH \, dt}|q_N\rangle\langle q_N|e^{-iH \, dt}|q_{N-1}\rangle\cdots q(t_k)\langle q_k|e^{-iH \, dt}|q_{k-1}\rangle\cdots\langle q_1|e^{-iH \, dt}|q\rangle\nonumber\\   &=&\int \prod_{j=1}^N dq_j \, q(t_k) \, \langle q'|e^{-iH \, dt}|q_N\rangle\langle q_N|e^{-iH \, dt}|q_{N-1}\rangle\cdots\langle q_k|e^{-iH \, dt}|q_{k-1}\rangle\cdots\langle q_1|e^{-iH \, dt}|q\rangle\nonumber\end{eqnarray*}

(5)   \begin{eqnarray*}\langle q'(t')|q(t)\rangle &=& \int \mathcal{D}[q] \, q(t_k) \, e^{i\int_t^{t'} L(q,\dot{q}) dt}\nonumber\end{eqnarray*}

…from which it should be clear from the expansion on the right-side that it is time ordered; pick two {\bf arbitrary times} t_1,t_2, then each occurs at some multiple k,\ell of dt, k>\ell,

(6)     \begin{eqnarray*}&&\langle q'(t')|T\hat{Q}(t_1)\hat{Q}(t_2)|q(t)\rangle\nonumber\\     &= &\int \prod_{j=1}^N dq_j\langle q'|e^{-iH \, dt}|q_N\rangle\langle q_N|e^{-iH \, dt}|q_{N-1}\rangle\cdots \langle q_k|\hat{Q}e^{-iH \, dt}|q_{k-1}\rangle\cdots\langle q_\ell|\hat{Q}e^{-iH \, dt}|q_{\ell-1}\rangle\cdots\langle q_1|e^{-iH \, dt}|q\rangle\nonumber\\     &= &\int \prod_{j=1}^N dq_j\langle q'|e^{-iH \, dt}|q_N\rangle\langle q_N|e^{-iH \, dt}|q_{N-1}\rangle\cdots q(t_k)\langle q_k|e^{-iH \, dt}|q_{k-1}\rangle\cdots q(t_\ell)\langle q_\ell|e^{-iH \, dt}|q_{\ell-1}\rangle\cdots\langle q_1|e^{-iH \, dt}|q\rangle\nonumber\\ &=& \int \mathcal{D}[q] \, q(t_1) q(t_2)\, e^{i\int_t^{t'} L(q,\dot{q}) dt}\nonumber\end{eqnarray*}

so the object on the right automatically produces time ordered operator product amplitudes.
Introduce variational derivatives

    \[{\delta\over \delta f(x)}f(y)=\delta(x-y), \qquad {\delta\over \delta f(x)}\int f(y) K(y) \, dy=K(x)\]

and returning momentarily to the oscillator
begin{eqnarray}{\delta\over \delta f(t)}e^{-{i\over 2}\int dt_1 \int dt_2 F(t_1)D(t_1-t_2)F(t_2)}&=&-{i\over 2}\Big(\int dt_1 \int dt_2 \Big(\delta(t-t_1)D(t_1-t_2)F(t_2)\nonumber\\   &+&F(t_1)D(t_1-t_2)\delta(t-t_2)\Big)e^{-{i\over 2}\int dt_1 \int dt_2 F(t_1)D(t_1-t_2)F(t_2)}\nonumber\\   &=&-i\int dt_1D(t-t_1)F(t_1)\, \,  e^{-{i\over 2}\int dt_1 \int dt_2 F(t_1)D(t_1-t_2)F(t_2)}\nonumber\\  {\delta^2\over \delta f(t) \delta(t')}e^{-{i\over 2}\int dt_1 \int dt_2 F(t_1)D(t_1-t_2)F(t_2)}\Big{|}_{F=0}&=&-iD(t-t')\nonumber\end{eqnarray}

Let H\rightarrow H'=H-fq where f(t) is some force or current, then with t_1=k\delta t and t_2=\ell dt, \ell<k, the variational derivatives will ignore all functions of t for which t\ne t_1,t_2 in

(7)   \begin{eqnarray*}&&{\delta\over \delta f(t_1)}{\delta\over \delta f(t_1)}\langle q'(t')|q(t)\rangle\nonumber\\   &= &\int \prod_{j=1}^N dq_j\langle q'|e^{-iH' \, dt}|q_N\rangle\langle q_N|e^{-iH' \, dt}|q_{N-1}\rangle\cdots {\delta\over \delta f_k}\langle q_k|e^{-iH' \, dt}|q_{k-1}\rangle\nonumber\\   &\cdots&{\delta\over \delta f_\ell}\langle q_\ell|e^{-iH' \, dt}|q_{\ell-1}\rangle\cdots\langle q_1|e^{-iH' \, dt}|q\rangle\nonumber\\   &= &i^2\int \prod_{j=1}^N dq_j\langle q'|e^{-iH' \, dt}|q_N\rangle\langle q_N|e^{-iH' \, dt}|q_{N-1}\rangle\cdots q(t_k)\langle q_k|e^{-iH' \, dt}|q_{k-1}\rangle\nonumber\\   &\cdots& q(t_\ell)\langle q_\ell|e^{-iH' \, dt}|q_{\ell-1}\rangle\cdots\langle q_1|e^{-iH' \, dt}|q\rangle\nonumber\\   &=& i^2\int \mathcal{D}[q] \, q(t_1) q(t_2)\, e^{i\int_t^{t'} (L(q,\dot{q})+fq) dt}\nonumber\end{eqnarray*}

from which you can see that the path integral generates time-ordered expectations of operator products for H\rightarrow H'=H-fq

    \[{\delta\over \delta f(t_1)}\cdots  {\delta\over \delta f(t_n)}\langle q'(t')|q(t)\rangle\Big{|}_{f=0}=\langle q'(t')|T\hat{Q}(t_1)\hat{Q}(t_2)|q(t)\rangle\]

At t\rightarrow\pm\infty assume that the sources/drivers are zero, let |0_{\pm\infty}\rangle be the ground/vacuum states at these times and we are using \omega^2\rightarrow \omega^2-i\epsilon;

(8)   \begin{eqnarray*}\langle 0_\infty|0_{-\infty}\rangle_{F\ne 0}&=& \int dq' dq \langle 0_\infty|q'_\infty\rangle\langle q'_\infty|q_{-\infty}\rangle_{F\ne 0}\langle q_{-\infty}|0_{-\infty}\rangle\nonumber\\   &=& \int dq' dq \langle 0_\infty|q'_\infty\rangle e^{-{i\over 2\hbar}\int d\xi {F(\xi)F(-\xi)\over \xi^2-\omega^2+i\epsilon}}\langle q'(\infty)|q(-\infty)\rangle_{F=0}\, \langle q_{-\infty}|0_{-\infty}\rangle\nonumber\\   &=& \Big(\int dq' dq \langle 0_\infty|q'_\infty\rangle \langle q'(\infty)|q(-\infty)\rangle_{F=0}\, \langle q_{-\infty}|0_{-\infty}\rangle\Big)e^{-{i\over 2\hbar}\int d\xi {F(\xi)F(-\xi)\over \xi^2-\omega^2+i\epsilon}} \nonumber\\   &=& \langle 0_\infty|0_{-\infty}\rangle_{F=0} \, e^{-{i\over 2\hbar}\int d\xi {F(\xi)F(-\xi)\over \xi^2-\omega^2+i\epsilon}} \nonumber\\   &=& \langle 0_\infty|0_{-\infty}\rangle_{F=0} e^{-{i\over 2}\int dt_1 \int dt_2 F(t_1)D(t_1-t_2)F(t_2)}\nonumber\\   &=& \langle 0_\infty|0_{-\infty}\rangle_{F=0} \int \mathcal{D}[q] e^{i\int_{-\infty}^\infty \Big({1\over 2}\dot{q}^2-{1\over 2}(\omega^2-i\epsilon)q^2+fq\Big)}\nonumber\end{eqnarray*}

Without sources/drivers \langle 0_\infty|0_{-\infty}\rangle_{F=0}=1. All of the following are equivalent

(9)   \begin{eqnarray*}\int \mathcal{D}[q] e^{i\int_{-\infty}^\infty \Big({m\over 2}\dot{q}^2-{1\over 2}m(\omega^2-i\epsilon)q^2+fq\Big)}&=&e^{-{i\over 2\hbar}\int d\xi {F(\xi)F(-\xi)\over \xi^2-\omega^2+i\epsilon}} \nonumber\\   \int \mathcal{D}[q] e^{i\int_{-\infty}^\infty \Big({m\over 2}(1+i\epsilon)\dot{q}^2-{1\over 2}m(1-i\epsilon)\omega^2q^2+fq\Big)}&=&e^{-{i\over 2\hbar}\int d\xi {F(\xi)F(-\xi)\over \xi^2-\omega^2+i\epsilon}} \nonumber\\    \int \mathcal{D}[q] \mathcal{D}[p]e^{i\int_{-\infty}^\infty \Big(p\dot{q}-(1-i\epsilon)H+fq\Big)}&=&e^{-{i\over 2\hbar}\int d\xi {F(\xi)F(-\xi)\over \xi^2-\omega^2+i\epsilon}} \nonumber\end{eqnarray*}

provided factors like \omega^2, (\xi^2+\omega^2) are absorbed into \epsilon.

Home 2.0
error: Content is protected !!